Hazardous Chemicals, Activities or Devices
(Include DEA-controlled substances, prescription drugs, alcohol & tobacco, firearms and explosives, radiation, lasers, etc.)

The following rules apply to research that involves the use of hazardous chemicals, devices and activities. The rules include substances and devices that are regulated by local, state, country, or international law, most often with restrictions of their use by minors such as DEA-controlled substances, prescription drugs, alcohol and tobacco and firearms and explosives. Hazardous activities are those that involve a level of risk above and beyond that encountered in the student’s everyday life.

These rules are intended to protect the student researcher by ensuring that the proper supervision is provided and that all potential risks are considered so that the appropriate safety precautions are taken. Before beginning research involving hazardous chemicals, activities or devices, be sure to check with your school, local, or regional fair as more strict rules and guidelines may be in effect.

Rules for ALL Projects Involving Hazardous Chemicals, Activities and Devices

1) The use of hazardous chemicals and devices and involvement in hazardous activities require direct supervision by a Designated Supervisor, except those involving DEA-controlled substances which require supervision by a Qualified Scientist.

2) The student researcher must conduct a risk assessment in collaboration with a Designated Supervisor or Qualified Scientist prior to experimentation. This risk assessment is documented on the Risk Assessment Form (3).

3) Student researchers must acquire and use regulated substances in accordance with all local, state, U.S. federal and country laws. For further information or classification for these laws and regulations, contact the appropriate regulatory agencies.

4) For all chemicals, devices or activities requiring a Federal and/or State Permit, the student/supervisor will be expected to have the permit prior to the onset of experimentation. A copy of the permit should be available for review by adults supervising the project and/or the Scientific Review Committee in their review prior to competition.

5) The student researcher must design experiments to minimize the impact that an experiment has on the environment, for instance using minimal quantities of chemicals that must subsequently be disposed of in an environmentally safe manner in accordance with good laboratory practices.

6) The following forms are required:
 a. Checklist for Adult Sponsor (1)
 b. Student Checklist (1A)
 c. Research Plan
 d. Approval Form (1B)
 e. Reg. Research Institution Form (1C) - when applicable
 f. Qualified Scientist Form (2) - when applicable
 g. Risk Assessment Form (3)

Additional Rules for Specific Regulated Substances

There are additional rules for the following regulated substances:
 A. DEA-controlled Substances
 B. Prescription Drugs
 C. Alcohol & Tobacco
 D. Firearms and Explosives

A. DEA-Controlled Substances

The U.S. Drug Enforcement Administration (DEA) regulates a number of chemicals that can be diverted from their regular use to make illegal drugs. Other countries may have similar regulatory bodies; students outside of the U.S. should consult the drug regulatory agency in their country in addition to being aware of DEA regulations. DEA-controlled substances and their schedule number can be found at the DEA website listed in the sources of information at the end of the section. If a student is uncertain whether chemicals involved in a project are controlled by the DEA, he/she should consult the listing of DEA-controlled substances.

1) All studies using DEA-controlled substances must be supervised by a Qualified Scientist who is licensed by the DEA (or other appropriate international regulatory body) for use of the controlled substance.

2) All studies using DEA Schedule 1 substances must have the research protocol approved by DEA before research begins. Schedule 2, 3 and 4 substances do not require protocol approval by DEA.

B. Prescription Drugs

Prescription drugs are drugs regulated by federal or country laws and are available only through a pharmacy to protect against inappropriate or unsafe use. Therefore, special precautions must be taken in their use for a science project.

1) Students are prohibited from administering prescription drugs to human subjects.

2) Administering any prescription drug to vertebrate animals must be done under all appropriate vertebrate animal rules and guidelines. A veterinarian is required.

C. Alcohol and Tobacco

The U.S. Alcohol and Tobacco Tax and Trade Bureau (TTB) regulates the production of alcohol and distribution of alcohol and tobacco products. Many such products have an age restriction for purchase, possession and consumption. Students outside of the U.S. must additionally adhere to their local and country laws and regulations.

The Designated Supervisor is responsible for the acquisition, usage and appropriate disposal of the alcohol or tobacco used in the study.

1) Production of ethyl alcohol (wine or beer) is allowable in the home under the supervision of the parents and must meet the TTB home production regulations.
2. Fermentation studies in which minute quantities of ethyl alcohol are produced are permitted.

3. Students are allowed to conduct science fair experiments involving the distillation of alcohol for fuel or other non-consumable products. However, to do so, the work must be conducted at school and a TTB permit must be obtained by school authorities. Details regarding this process are available from the Alcohol and Tobacco Tax and Trade Bureau (TTB) website.

D. Firearms and Explosives
The U.S. Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), along with state agencies, regulates the purchase and use of firearms and explosives. A firearm is defined as a small arms weapon from which a projectile is fired by gunpowder. An explosive is any chemical compound, mixture or device, the primary purpose of which is to function by explosion. Explosives include, but are not limited to, dynamite, black powder, pellet powder, detonators, and igniters.

The purchase of a firearm by a minor is generally unlawful. The use of a firearm, without proper state certification, is illegal. Students should check the training and certification requirements of individual states and countries.

1. Projects involving firearms and explosives are allowable when conducted with the direct supervision of a Designated Supervisor and when in compliance with all federal, state and local laws.

2. A fully assembled rocket motor, reload kit or propellant modules containing more than 62.5 grams of propellant are subject to the permitting, storage and other requirements of federal explosive laws and regulations.

Note: Potato guns or paintball guns are not firearms unless they are intended to be used as weapons. They must be treated as hazardous devices.

Guidance for Risk Assessment
Please find below guidance on conducting risk assessment when using the following:

A. Hazardous Chemicals
B. Hazardous Devices
C. Radiation

A. Hazardous Chemicals
A proper risk assessment of chemicals should include review of factors such as the degree of toxicity, reactivity, flammability or corrosiveness.

Toxicity – the tendency of a chemical to be hazardous to health when inhaled, swallowed, injected or in contact with the skin

Reactivity - the tendency of a chemical to undergo chemical change

Flammability – the tendency of a chemical to give off vapors which readily ignite when used under normal working conditions

Corrosiveness – the tendency of a chemical, upon physical contact, to harm or destroy living tissues or physical equipment.

When doing a risk assessment the type and amount of exposure to a chemical must be considered. For example, an individual’s allergic and genetic disposition may have an influence on the overall effect the chemical may have. The student researcher must refer to Material Safety Data Sheets (MSDS) to ensure that proper safety precautions are taken. Some MSDS sheets (e.g., Flinn) rank the degree of hazard associated with a chemical. This rating may assist students and adult sponsors in determining risk associated with the use of a chemical.

A risk assessment must include proper disposal methods for the chemicals used in an experiment. The Flinn Catalog (referenced below) provides good information for the proper disposal of chemicals. If applicable, the student researcher must incorporate in the research plan disposal procedure required by federal and state guidelines.

Environmentally Responsible Chemistry
The mission of environmentally responsible (green) chemistry is to avoid the use or production of hazardous substances during chemical process. The principles of green chemistry are described on the EPA website in the Sources of Information section. Whenever possible the following principles should be incorporated into the research plan.

• Prevent waste
• Use safer chemicals and products
• Design less hazardous chemical syntheses
• Use renewable materials
• Use catalysts
• Use safer solvents and reaction conditions
• Increase energy efficiency
• Minimize the potential for accident

B. Hazardous Devices
The documentation of a risk assessment (Form 3) is required when a student researcher works with potentially hazardous/dangerous equipment and/or other devices, in or outside a laboratory setting, that require a moderate to high level of expertise to ensure their safe usage. Some commonly used devices (Bunsen burners, hot plates, saws, drills, etc.) may not require a documented risk assessment, assuming that the student researcher has experience working with the device. Use of other potentially dangerous devices such as high vacuum equipment, heated oil baths, NMR equipment, and high temperature ovens must have documentation of a risk assessment. It is recommended that all student-designed inventions also have documentation of a risk assessment.
C. Radiation

A risk assessment must be conducted when a student uses non-ionizing radiation beyond that normally encountered in everyday life. Non-ionizing radiation includes the spectrum of ultraviolet (UV), visible light, infrared (IR), microwave (MW), radiofrequency (RF) and extremely low frequency (ELF). Lasers usually emit visible, ultraviolet or infrared radiation. Lasers are classified into four classes based upon their safety. Manufacturers are required to label Classes II – IV lasers.

- Class I lasers are those found in CD players, laser printers, geological survey equipment and some laboratory equipment. There are no known risks associated with using a Class I laser.
- Class II lasers are found in laser pointers, aiming and range finding devices and pose a risk if the beam is directly viewed over a long period of time.
- Class III lasers are found in higher powered laser pointers, printers and spectrometers. They are to be considered hazardous devices which can cause eye damage when the beam is directly viewed even for a short period of time.
- Class IV lasers are high powered lasers used in surgery, research, and industrial settings. They are extremely hazardous and can cause eye and skin damage from both direct and indirect exposure. The beam is also a fire hazard.

A risk assessment must be conducted when a student uses ionizing radiation beyond that normally encountered in everyday life. Projects involving radionuclides (radioisotopes) and X-rays must involve a careful examination of the risks associated with the study. Depending upon the level of exposure, radiation released from these sources can be a health hazard. Most research institutions have a Radiation Safety Office which oversees the use of ionizing radiation and ensures compliance with state and federal regulations.

Additional Sources of Information are available on page 26 and at www.societyforscience.org/isef/rulesandguidelines.